DINÂMICA HIDROLÓGICA E GEOQUÍMICA DA BACIA AMAZÔNICA

Relatório da Campanha do Programa HIBAM

Campanha de medições nos Rios Amazonas, Negro, Solimões, Madeira, Trombetas e na Várzea do Lago Grande de Curuai

18/03/2005 – 06/04/2005 (Manaus – Santarém – Várzea de Curuai - Santarém - Manaus)

1.1. Título do projeto

Título completo: Dinâmica Hidrologica e Geoquímica da Bacia Amazônica

Título abreviado: HiBAm

1.2. Convênio

Convênio CNPq/IRD Acordo de Cooperação Técnica Brasil / França

1.3. Processo

Processo nº 690001/2004-5

1.4. Coordenadores

Coordenador brasileiro

Herbert Otto Shubart **ANA**, Setor Policial Sul, Área 05, Quadra 3, Bloco L 70610-200 Brasília DF Tel: 445 5210

Fax: 445 5296 shubart@ana.gov.br

Coordenadora francesa

Patricia Turcq- IRD Depart. Geoquímica, Instituto de Quimica-Universidade Federal Fluminense Morro do Valonguinho s/nº 24020-007 Niteroi, RJ

Tel: 26292208 Fax: 27174189 pturcq@geoq.uff.br

CAMPANHA DE MARÇO DE 2005

2. PARTICIPANTES DA CAMPANHA

Nome	Instituição de origem	Especialidade	Cidade de Origem
Marcos OLIVEIRA	CPRM	Geológo sedimentologista	Manaus
João BOSCO	CPRM	Técnico	Manaus
Maurrem RAMON	ANA	Hidroquimico	Brasilia
Fabricio	ANA	Informatico	Brasilia
Marcelo AMORIM	UFF	Mestrando	<u>Niteroi</u>
Patricia MOREIRA-TURCQ	IRD-UFF	Geoquímica	Niteroi
Lilian CARLOS	UFF	Iniciação Cientifica	Niteroi
Felipe MELLO de OLIVEIRA	UFRJ- COPPE	Mestrando	Rio de Janeiro
Marie Paule BONNET	IRD-LMTG	Modelisadora	Toulouse
Laurence MAURICE-BOURGOIN	IRD-LMTG	Geoquimica	Toulouse
Polyana DUTRA	UPS-LMTG	Doutoranda	Toulouse

3. OBJETIVOS:

A campanha de Março de 2005, além dos objetivos gerais do Projeto Hibam (medições das vazões nos principais tributários e no Amazonas assim como nos principais igarapés que ligam a Várzea de Curuai ao Amazonas (quando o nivel de agua possibilitou), amostragem de água nas principais estações da várzea e dos Rios, visita a todos os observadores...), visita as 2 estações meteorologicas da varzea para retirada dos dados acumulados no periodo, também teve como objetivo a realização de um estudo especifico sobre a ação das ondas na remobilização dos sedimentos superficiais (Tese de Mestrado de Marcelo Amorim na UFF), amostragem das principais fontes de sais nutrientes e de mateéria orgânica dissolvida e particulada e uma amostragem aprofundada da agua e sedimentos para o estudo do mercurio na Varzea (Tese de Doutorado de

Polyana Dutra na Universidade Paul Sabatier no LMTG). E também uma abordagem preliminar sobre o deslocamento das dunas de fundo no Rio Amazonas para a tese de mestrado de Felipe Oliveira na COPPE, UFRJ através da realização de perfis de ADCP longitudinais a corrente do Rio, dando continuidade aos trabalhos desenvolvidos a partir de 2001 pela equipe da Universidade Federal do Rio de Janeiro (COPPE). O interesse fundamental deste tipo de medição consiste na avaliação do tipo e da geometria das estruturas de fundo presentes no Amazonas em diferentes situações hidrológicas. Também, mediante a repetição dos perfis longitudinais nos mesmos locais (durante diferentes periodos), é possível estimar o deslocamento das dunas

As atividades realizadas durante esta campanha foram :

- Medições das vazões Paricatuba (Rio Negro), Manacapuru (Solimões), Foz do Madeira, Oriximiná (Rio Trombetas) e no Rio Amazonas em Iracema, Parintins e Obidos. Com coleta de água em todos os pontos inclusive para analises a serem realizadas pela ANA para o estudo da qualidade das aguas dos Rios da Bacia Amazônica.
- ➤ Realização de perfis de ADCP longitudinais a margem do Rio Amazonas na região de Obidos.
- Medições superficiais e verticais em 9 pontos dos Rios Negro, Solimões, Madeira, Trombetas e Amazonas para determinação dos parâmetros físico-químicos clássicos.
- Medições de vazão nos igarapés e paranas (quando possivel) de conexão com o rio Amazonas.
- ➤ Medições superficiais e verticais em 28 pontos da várzea para determinação dos parâmetros físico-químicos clássicos.
- Amostragens de água em 20 pontos da várzea para o estudo da matéria orgânica dissolvida (COD e NOD) e particulada (NOP E COP) assim como do carbono inorgânico dissolvido e dos sais nutrientes, e clorofila a. E tambem para analise do mercurio.
- ➤ Visita e pagamento de todos os observadores da várzea e visita às duas estações meteorológicas para coleta dos dados acumulados depois da ultima campanha.
- ➤ Amostragens de sedimentos em perfis logitudinais em 1 lago para o estudo da remobilização dos sedimentos superficias.
- Experimentos de respiração em Lagos de águas pretas e Lagos de águas brancas.
- ➤ Coleta de agua em todos os pequenos igarapes que alimentam a parte sul da Varzea , assim como de dois poços de aguas para estudo dos aportes via lençol freatico.

Experimentos para determinação da ação das ondas em sobre a remobilização dos sedimentos superficiais em 4 Lagos da Varzea.

4. ATIVIDADES

4.1. Medições de vazão nos Rios:

As medições de vazão foram realizadas nas estações fluviométricas selecionadas pelo projeto HIBAM ao longo dos rios Solimões, Negro, Madeira, Trombetas e Amazonas assim como na foz dos principais afluentes e nos igarapés de comunicação da várzea de Curuai com o Rio Amazonas.

As vantagens do uso da tecnologia ADCP vêem da possibilidade de se medir vazões praticamente em qualquer tipo de seção, assim como praticamente em qualquer tipo de regime. Assim sendo tivemos nas seções de estudo:

Os perfis das diferentes medidas podem ser observados a seguir assim como um resumo dos principais resultados encontrados podem ser vistos na Tabela 1 (Anexos). As medidas fisico-quimicas nos perfis verticais, como por exemplo na estação de Paricatuba no Rio Negro podem ser observadas na Tabela 2 (Anexos).

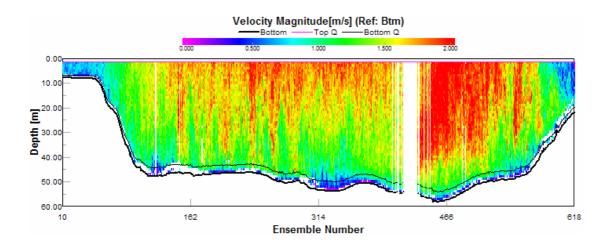


Figura 01: Perfil da magnitude de velocidade em Iracema – Rio Amazonas.

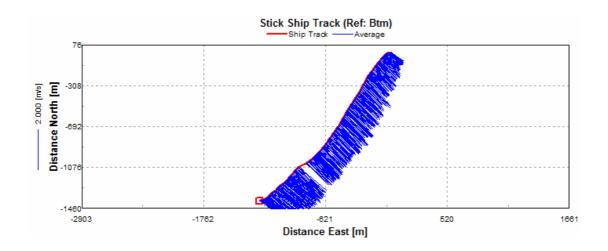


Figura 02: Trajetória do barco. Iracema – Rio Amazonas

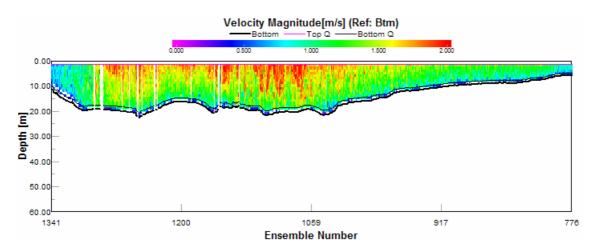


Figura 03: Perfil da magnitude da velocidade. Rio Madeira.

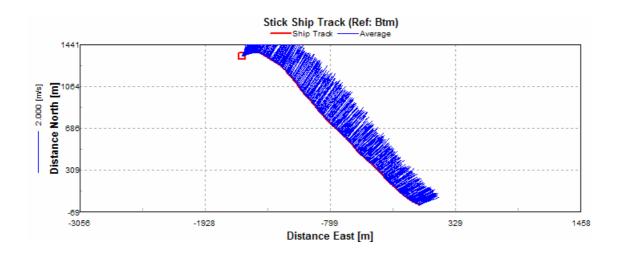


Figura 04: Trajetória do Barco. Rio Madeira.

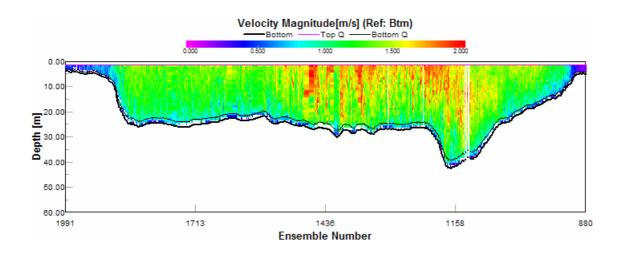


Figura 05: Perfil da magnitude da velocidade. Rio Solimões – Manacapuru.

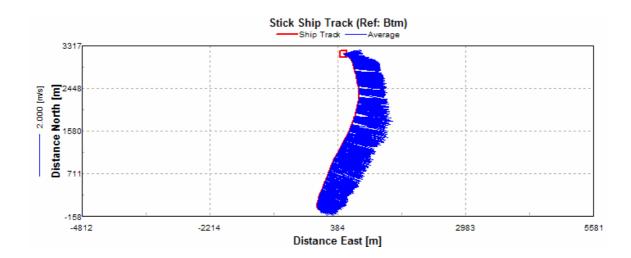


Figura 04: Trajetória do Barco. Rio Solimões. Manacapuru.

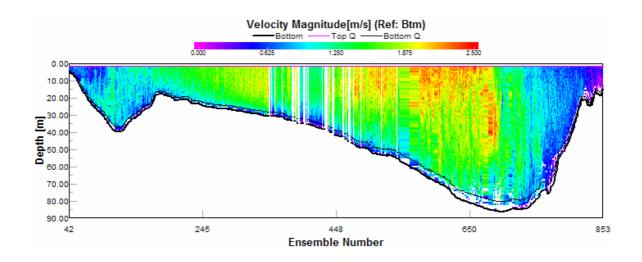


Figura 05: Perfil da magnitude da velocidade. Rio Amazonas – Parintins.

Figura 06: Trajetória do Barco. Rio Amazonas. Parintins.

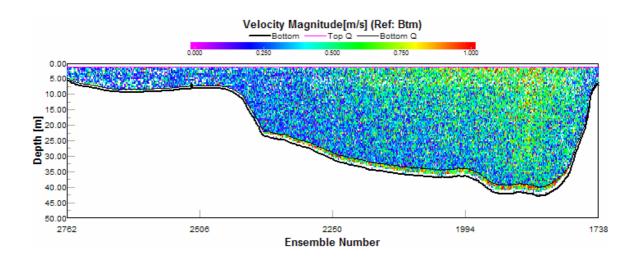


Figura 07: Perfil da magnitude da velocidade. Rio Negro – Paricatuba.

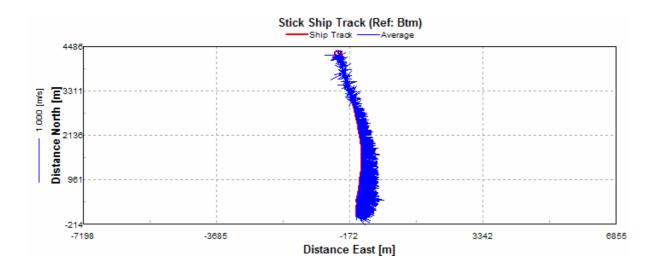


Figura 08: Trajetória do Barco. Rio Negro – Paricatuba

4.3. Geoquímica das águas e dos sedimentos da várzea de Curuai

Durante essa campanha o nível do Lago Grande de Curuai estava a bastante alto para o periodo (o nível da água na escala em Tabatinga do Salé =3,48m no dia 24 de março, o que nos permitiu navegar facilmente com o barco grande dentro da várzea e realizar todas as coletas de água e sedimentos previstas.

Durante essa campanha foram medidos os principais parâmetros fisico-quimicos (condutividade, temperatura, pH, alcalinidade e oxigênio dissolvido) em 37 estações (Tabelas 2 e 3). Destas 37 estações 28 encontram-se na Várzea de Curuai (Tabela 3) e as outras 9 nos principais tributários do Amazonas (Negro, Solimões, Madeira, Trombetas e no próprio Amazonas em 3 estações: Iracema, Parintins e Obidos) (Tabela 2).

O fluxo d'água estava entrando na várzea por todos os igarapés e paranás, e estava saindo somente pela boca à jusante (Foz Sul e Foz Norte). As medidas de vazão foram realizadas com a ADCP 600 kHz.

Todas as amostras foram filtradas diretamente no barco, para posterior análise em laboratório de:

- Material em Suspensão (MES)
- Sais nutrientes (nitrito, nitrato, amonia, fosfato), sais maiores (ânions, cations);
- Clorofila a e feopigmentos;
- Determinação do COP, NOP, 13C, 15N
- carbono e nitrogenio orgânico dissolvido
- Carbono inorgânico dissolvido
- Mercurio (metil mercurio e mercurio inorgânico)
- Elementos maiores

A determinação do material em suspensão, a determinação da granulometria da fração fina (<63 μm) e grosseira (>63 μm) a laser, assim como a quantificação mineralogica por Infra Vermelho a Transformada de Fourrier será realizada no Programa de Geoquimica por Marcelo Amorim.

As análises da matéria orgânica (NOD, COP, NOP, Chl_a, feopigmentos, sais nutrientes, cations, anions) serão determinados no Programa de Geoquímica da UFF (por Patricia Turcq e Marcela Perez), grande parte destas analises fazem parte da tese de doutorado da Marcela Perez no Programa de Geoquimica. As amostras dos isotopos do carbono e do nitrogenio serão realizadas nos Estados Unidos.

As determinações do mercurio (orgânico e inorgânico) nas aguas e sedimentos e dos elementos maiores serão realizadas na Universidade Paul Sabatier e na Universidade de Pau, na França por Laurence Maurice e Polyana Dutra.

A amostragem de água em Óbidos foi realizada a montante da cidade para evitar todo risco de contaminação e a 25% da margem direita para evitar o sinal das águas do rio Trombetas.

Também foram realizados 4 experimentos para a determinação das taxas de respiração em lagos de águas brancas e em lagos de águas pretas.

3.2 Metas alcançadas

Todos os objetivos programados para essa campanha foram alcançados e o trabalho previsto para a realização de nosso projeto assim como para o avanço do trabalho de tese dos tres estudantes na várzea foi também realizado.

3.3 Geração de projetos e produtos

- Aquisição de dados para a modelagem hidrodinâmica e sedimentológica dos escoamentos dos rios Solimões, Madeira e Amazonas
- Aquisição de dados para a modelagem hidrológica, sedimentologica e geoquímica da várzea de Curuai
- Aquisição de dados para a calibração das imagens de satélite das várzeas quanto a distribuição de Clorofila.
- Aquisição de dados para o estudo da remobilização dos sedimentos superficiais durante o
 periodo de baixas águas, quando a ação do vento nos lagos parece ser o principal fator desta
 ressuspensão.
- Aquisição de dados para o estudo da ciclagem da matéria orgânica em lagos de aguas pretas e brancas.
- Aquisição de dados para o estudo do mercurio nos sedimentos e nas aguas da varzea.
- Aquisição de dados para o estudo do deslocamento das dunas de fundo do Rio Amazonas.

Estes resultados, após interpretação, serão objetos de apresentações em conferências, de publicações em revistas nacionais e internacionais e também serão publicados sob forma de teses dos estudantes

que participaram das campanhas e das análises nos laboratórios (Universidade Paul Sabatier-Laboratoire de Mecanismes et Transfert en Geologie, Universidade Federal do Rio de Janeiro-COPPE, Universidade Federal Fluminense-Programa de Geoquimica).

4. Cooperação

Participaram desta campanha 2 pesquisadores brasileiros da ANA, 3 pesquisadores do IRD, 1 pesquisador da CPRM, 1 técnico da CPRM, além de 2 estudantes, um de mestrado e um de doutorado demonstrando um total entrosamento de objetivos e colaboração.

Gostariamos agradecer em especial a participação activa do pessoal da CPRM de Manaus durante essa campanha. Vale ressaltar a ajuda de Marco Oliveira, gerente do Serviço hidrológico da CPRM de Manaus, na preparação desta campanha e de João Bosco Alfenas tecnico da CPRM extremamente importante para nosso trabalho.

Destacamos que com o sucesso amostral das campanhas realizadas pelo HYBAM visamos para o próximo ano a participação de mais alunos de Mestrado e Doutorado do Programa e Pós-Graduação em Geoquímica da UFF.

Agradeço a participação de todos os membros da equipe, sem os quais não teria sido possível a realização da mesma e a confecção deste relatório. Agradeço também a tripulação do Barco Quadros Netto, sempre gentis e prontos a ajudar em tudo o que era preciso.

Patricia Turcq

ANEXOS

Tabela 1: Dados das medições de vazão nas diferentes estações Hidrogicas no Rio Amazonas e seus principais afluentes. Campanha de Março 2005

Station (file name)	# Ens.	Total Q	Meas.	Total Area	Width	Boat Speed	Q/Area	Flow Speed	Data
		$[m^3/s]$	$[m^3/s]$	[m²]	[m]	[m/s]	[m/s]	[m/s]	
RIO NEGRO									
PARICATUBA									
paricatuba000r.000	881	28776,797	25997,15	102293,14	4097,63	1,667	0,281	0,291	18032005
paricatuba001r.000	789	28400,979	25825,81	105327,18	4145,61	1,862	0,27	0,281	18032005
paricatuba002r.000	1034	28675,799	25990,96	102923,62	4127,92	1,485	0,279	0,286	18032005
Average	901	28617,858	25937,97	103514,65	4123,72	1,671	0,277	0,286	
Std. Dev.	124	194,493	97,187	1601,04	24,26	0,189	0,006	0,005	
Std./ Avg.	0,14	0,01	0,003747	0,02	0,01	0,11	0,02	0,02	
~									
RIO SOLIMÕES									
MANACAPURU									
manacapuru004r.000		107905,86	•	82301,63	3333,86	1,75	1,31	1,30	19032005
manacapuru000r.000	769,00	108311,49	94534,33	83076,46	3264,07	2,08	1,30	1,31	19032005
manacapuru001r.000	######	108489,06	94482,36	81875,85	3287,75	1,73	1,33	1,30	19032005
Average	950,00	108235,47	94265,94	82417,98	3295,23	1,86	1,31	1,30	
Std. Dev.	160,00	298,94	420,65	608,70	35,49	0,20	0,01	0,01	
Std./ Avg.	0,17	0,00	0,00	0,01	0,01	0,11	0,01	0,01	
					_				
RIO AMAZONAS									
ITACOATIARA									
Itacoatiara300_000r.000	1102	186089,64	153336,4	124557,84	2370	1,945	1,494	1,408	20032005

Itacoatiara300b000r.000	681	182356,46	•	121188,35	2329,36	2,066	1,505	1,504	20032005
Itacoatiara300c000r.000	847	179694,78	151280,6	119797,06	2287,32	1,82	1,5	1,409	20032005
Itacoatiara300b001r.000	46	182274,36	151537,5	123021,65	2238,35	2,074	1,482	1,419	20032005
Average	669	182603,81	151592,4	122141,22	2306,26	1,976	1,495	1,435	
Std. Dev.	450	2632,055	1295,953	2083,13	56,47	0,12	0,01	0,046	
Std./ Avg.	0,67	0,01	0,01	0,02	0,02	0,06	0,01	0,03	
RIO AMAZONAS									
IRACEMA									
Iracema000r.000	609	130099,3	118089,1	88752,61	1923,49	1,751	1,466	1,491	21032005
Iracema002r.000	634	131791,59	119727	88460,24	1940,34	1,767	1,49	1,476	21032005
Iracema003r.000	526	130558,67	119034,3	88380,12	1914,74	2,012	1,477	1,499	21032005
Iracema004r.000	639	131396,66	119695	87589,04	1931,77	1,721	1,5	1,503	21032005
Average	602	130961,56	119136,3	88295,5	1927,59	1,813	1,483	1,492	
Std. Dev.	52	771,163	767,705	497,44	10,98	0,134	0,015	0,012	
Std./ Avg.	0,09	0,01	0,01	0,01	0,01	0,07	0,01	0,01	
RIO AMAZONAS							-		
PARINTINS									
parintins300000r.000	1818	182174,5	151668,1	130278,34	3218,55	1,751	1,398	1,495	22032005
parintins300b000r.000	1175	184578,17	161179,8	134515,63	3249,9	1,924	1,372	1,446	22032005
parintins60020050322203958_000r.000	724	177003,95	160354,6	134669,16	3255,7	1,78	1,314	1,347	22032005
parintins60020050322211336_000r.000	702	182180,38	164612,5	130722,76	3285,41	1,922	1,394	1,411	22032005
Average	1105	181484,25	159453,8	132546,47	3252,39	1,844	1,37	1,425	
Std. Dev.	523	3194,082	5508,186	2370,22	27,4	0,092	0,039	0,062	
Std./ Avg.	0,47	0,02	0,03	0,02	0,01	0,05	0,03	0,04	

RIO MADEIRA FOZ do MADEIRA

madeira20050320044948_000r.000 madeira20050320051254_000r.000 madeira_b20050320053154_000r.000 madeira_b20050320055228_000r.000 Average Std. Dev. Std./ Avg.	757 566 662 561 637 93 0,15	42251,358 43902,783 42564,955 43035,275 42938,593 719,006 0,02	34145,28 35717,17 35999,85 36417,31 35569,9 992,333 0,03	31870,82 32728,08 32819,14 33002,15 32605,05 502,58 0,02	2122,45 2152,69 2151,6 2172,76 2149,87 20,71 0,01	1,645 2,137 1,804 2,109 1,924 0,24 0,12	1,326 1,341 1,297 1,304 1,317 0,02 0,02	1,312 1,348 1,32 1,281 1,315 0,028 0,02	20032005 20032005 20032005 20032005
RIO AMAZONAS					-				
OBIDOS obidos60020050323181639_000r.000	573	182726,51	167184,5	122387,45	2511,88	1,936	1,493	1,474	23032005
obidos60020050323181039_0001.000	544	176860,5	162388,3	124508,02	2491,1	1,888	1,493	1,474	23032005
obidos60020050323183914_0001.000 obidos60020050323190038_000r.000	594	178980,77	164070,4	124506,02	2491,1	1,831	1,42	1,439	23032005
-		,	,	,	ŕ	· ·	*	ŕ	
obidos60020050323192358_000r.000	537	175665,4	161542,5	123825,84	2436,84	1,908	1,419	1,446	23032005
Average	562	178558,29	163796,4	123806,93	2482,66	1,891	1,442	1,449	
Std. Dev.	26	3098,596	2491,109	999,35	32,1	0,044	0,035	0,017	
Std./ Avg.	0,05	0,02	0,02	0,01	0,01	0,02	0,02	0,01	

Tabela 2: Principais parâmetros fisico-quimicos medidos na estação de Paricatuba no Rio Negro durante a campanha de março de 2005.

Prof	Temp	Cond	OD%	OD mg/l	рН	Redox	Turbidez	Prof
1	29,19	12	63,9	4,88	4	365,365	2,8	1,07
2,05	29,2	13	61,9	4,75	4,05	358,5	2,8	2,05
3,02	29,04	13	60,9	4,68	4,07	361,7	2,8	3,02
4,016	28,98	13	60,2	4,63	4,07	366,1	2,6	4,016
5,002	28,92	14	59,7	4,59	4,04	371,7	2,7	5,002
5,93	28,89	14	59,5	4,58	4,01	373,7	2,8	5,93
6,98	28,89	14	59	4,55	4,04	378,5	2,6	6,98
8,01	28,88	14	58,9	4,54	4	382,4	2,6	8,01
8,915	28,88	14	58,8	4,53	4	384,7	2,7	8,915
9,88	28,85	14	58,5	4,51	3,93	391,5	2,7	9,88
10,72	28,85	14	59,2	4,56	4,02	388,5	2,5	10,72
11,835	28,85	14	58,4	4,5	4,01	391,2	2,6	11,835
12,77	28,84	14	58,3	4,49	4	392,3	2,6	12,77
13,69	28,84	14	58,5	4,5	3,99	393,1	2,6	13,69
15,68	28,84	14	58,2	4,49	3,99	395	2,7	15,68
17,72	28,83	14	58,4	4,5	3,91	399,7	3,3	17,72
19,75	28,83	13	58,1	4,49	3,93	400,3	2,7	19,75
19,79	28,82	14	58,2	4,49	4	413,3	4	19,79
19,85	28,81	14	57,8	4,46	3,95	413,5	5	19,85

Tabela 3: Localisação das estações amostradas durante a campanha de março e principais resultados de campo

Data	Horario	Estação	Coordenadas GPS	Profundidade Total (m)	Prof amost (m)	T°C	O2 (mg.L- 1)	O2 %	рН	Cond µS	Turbidez
24/03/2005	17:00	Al10	S02° 04'.22.9" W056° 00' 18.8"	-	0,1	30,4	4,58 *	60	7,16	55	116,8
25/03/2005	07:30	A33A	S 02, 13441° W56,00835°	6,17	0,1	29,9	6,59	88	6,46	24,3	4,9
25/03/2005		A33A	S 02, 13441° W56,00835°	6,17	2	29,8	7,45	-	6,62	26	4,9
25/03/2005		A33A	S 02, 13441° W56,00835°	6,17	4	29,7	7,2	-	6,55	27	4,9
25/03/2005		A33A	S 02, 13441° W56,00835°	6,17	6	29,1	1,16	-	6,59	196	60
24/03/2005	17:00	A33-10	S 02,118045° W 56,00644°	2,5	0,1	25,4	3,38	41	6,02	12,3	-
25/03/2005	10:10	A33B	S 02,11944° W56,01984°	-	0,1	30,2	5,67	75	6,56	38,5	9,3
26/03/2005	08:45	A20A	S 02,19606° W055,80930°	3,5	0,1	29,9	5,88	76	7,03	56	-

26/03/2005	08:15 A18	S 02°07'55.7" W 056°01'24.4"	5	0,1	29,9	6,91	90	7,21	98	66,2
26/03/2005	08:30 A18	S 02°07'55.7" W 056°01'24.4"	5	4	29,1	4,97	64,8	7,17	103	1370
26/03/2005	10:10 A21	S 02,15840° W 55,85050°	4,5	0,1	30,4	3,38	45	7,37	66	43,4
26/03/2005	11:00 A20-2	1 S 02,17012° W 55,82411°	4,6	0,1	30,7	7,61	90	7,26	67	38
26/03/2005	11:30 A20-2	1 S 02,17012° W 55,82411°	4,6	2	29,6	4,9	63,7	-	66	38,1
26/03/2005	12:00 A20-2	1 S 02,17012° W 55,82411°	4,6	4	29,5	4,11	53,8	7,46	66	46,6
26/03/2005	11:30 AT10	S02,24577° - W055,77701°		0,1	-	4,1	56	-	31,4 -	
27/03/2005	A16 08:30 bloom	S02,17911° - W055,66140°		0,2		4,4	58		<u> </u>	
27/03/2005	14:50 A24	S 02°07'59,6 W 55°42'00,6	4	0,1	34,7	7,76	112	7,61	74	242
27/03/2005	A24 14:15 centro	S 02,12567° W 55,67261°		0,2	31,2	7,13	96	6,92	67	225
27/03/2005	13:08 A25	S 02°06'58,7 W 55°38'04,1	4,91	0,1	32,4	7,39	101	7,05	69	235
27/03/2005	13:20 A25	S 02°06′58,7	4,91	2	29,6	7,06	92,6	6,74	64	232

W 55°38'04,1

27/03/2005	13:25	A25	S 02°06'58,7 W 55°38'04,1		4,91	4	29,5	6,96	91	7,3	64	
28/03/2005	16:00	A24	S 02°07'59,6 W 55°42'00,6		4	0,1	31,2 -		-	-	67	225
28/03/2005		A24	S 02°07'59,6 W 55°42'00,6		4	4	29,8 -		-	-	65	300
29/03/2005		A26	\$02,26504° W055,13762°		4,9	0,1	32,4 -		-	-	69	235
29/03/2005		A26	S02,26504° W055,13762°		4,9	4	29,5 -		-	-	64	230
30/03/2005	08:00	Ai99	S 02, 26819° W 055,14245°	-		0,1	30,2	3,94	51,9	-	64,7 -	
30/03/2005	09:00	Ai101	S 02,26770° W 055,16757°	-		0,1	27,2	4,47	56,2	-	8,2 -	
30/03/2005	11:00	Ai102	S 02, 25071° W 055,19075°	-		0,1	28,2	4,45	55,9	-	9,7 -	